Abstract

Both radiation injury and oxidation toxicity occur when cells are exposed to ion irradiation (IR), ultimately leading to apoptosis. This study was designed to determine the effect of beta-sitosterol (BSS) on early cellular damage in irradiated thymocytes and a possible mechanism of effect on irradiation-mediated activation of the apoptotic pathways. Thymocytes were irradiated (6 Gy) with or without BSS. Cell apoptosis and apoptosis-related proteins were evaluated. BSS decreased irradiation-induced cell death and nuclear DNA strand breaks while attenuating intracellular reactive oxygen species (ROS) and increasing the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). BSS decreased the release of cytochrome c from mitochondria to the cytosol and the mitochondrio-nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, BSS partially inhibited the radiation-induced increase of cleaved caspase 3 and cleaved PARP, and attenuated the activation of JNK and AP-1. In addition, evidence suggests that ROS generated by irradiation are involved in this course of cell damage. The results indicate that BSS confers a radioprotective effect on thymocytes by regulation of the intracellular redox balance which is carried out via the scavenging of ROS and maintenance of mitochondrial membrane stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.