Abstract

Morphology control of one dimension (1D) nanomaterials is a pivotal issue in the field of nanoscience research to exploit their novel properties. Herein, we report the morphology controlled synthesis of 1D β-Sialon nanowires, nanobelts and hierarchical nanostructures via a thermal-chemical vapour deposition process using an appropriately selected catalyst and optimized temperature schedule. Vapour-solid (VS), a combination of vapour-liquid-solid (VLS)-based and VS-tip, and a combination of VS for one-generation nanowires with nucleation, growth and coalescence of two-generation nanobranches (NGCB) are used to explain the growth of β-Sialon nanowires, nanobelts and hierarchical nanostructures, respectively. Cathodoluminescence measurements show that the individual β-Sialon 1D nanostructures with different morphologies have different luminescent properties. All nanostructures exhibit two distinct emission peaks, the violet/blue emission centered at ~390 nm (3.18 eV), attributable to the near band edge (NBE) emission, and the red emission centered at ~728 nm (1.70 eV), assigned to the deep level (DL) emission. However, the DL emission is the ruling emission in the case of an individual β-Sialon nanowire, whereas the NBE emission becomes dominant in the case of an individual nanobelt as well as a hierarchical nanostructure due to the size and surface effects. The as-synthesized β-Sialon with controlled nanostructures and various morphologies can find potential applications in future nanodevices with tailorable or tunable photoelectric properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call