Abstract
An additional factor in reducing thermal conductivity for thermoelectric applications of semiconductor nanowires is a change in morphology. In this paper, for Si, Ge and core/shell Si/Ge nanowires the effect of the volume fraction and the type of core material on thermal conductivity at 300 K is investigated by means of nonequilibrium molecular dynamics. Nanowires with experimentally observed <100>, <110>, <111> and <112> orientations and different cross sections were taken into account. It was found that for <112>-oriented Si-core/Ge-shell nanowires with a core volume fraction of ~ 30% the thermal conductivity is the lowest (5.76 W/(m∙K)), while the thermal conductivity values for pure Si and Ge nanowires are 13.8 and 8.21 W/(m∙K), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.