Abstract
최근 산업의 생산공정에서는 머신비전시스템을 통하여 제품의 품질특성치에 대한 정보를 이미지 데이터로 제공하는 경우가 많다. 따라서 산업과 의학 현장에서 이미지 데이터의 모니터링을 위해 관리도 절차의 필요성이 많이 대두되고 있다. 이미지 데이터를 모니터링하는 관리도 절차는 전통적으로 사용하는 관리도 절차와 유사한 점도 있지만, 데이터의 구조를 비롯하여 각 이미지에서 ROI를 설정하여 관리도 절차를 적용하는 등 서로 다른 점도 많이 있다. 이 논문에서는 생산공정에서 제공되는 이미지 데이터에 대해 관리도를 사용하는 절차를 소개하고, 이미지 또는 ROI 크기의 확대와 축소가 제품의 이상원인을 탐지하는데 어떠한 영향이 주는지를 모의실험을 통하여 알아보았고 각 관리도의 성능 또한 비교하였다. A machine vision system (MVS) is a computer system that utilizes one or more image-capturing devices to provide image data for analysis and interpretation. Recently there have been a number of industrial- and medical-device applications where control charts have been proposed for use with image data. The use of image-based control charting is somewhat different from traditional control charting applications, and these differences can be attributed to several factors, such as the type of data monitored and how the control charts are applied. In this paper, we investigate the adjustment effect of image size and region of interest (ROI) size, when we use control charts to monitor grayscale image data in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.