Abstract

In this work, the superdiffusion equation with a Caputo derivative of order α∈(1,2) is considered. Some priori bounds on certain derivatives of the solution show that the solution exhibits a weak singularity at the initial time t=0. To resolve this initial singularity, we rewrite the superdiffusion equation as a coupled system by introducing a intermediate variable p:=Dtα/2(u−tu1), and adopt the L1 scheme and Alikhanov scheme on graded meshes in temporal direction. In spatial direction, the conforming finite element method is used. Furthermore, we derive the H1-norm stability result. It is worth noting that some priori bounds on certain derivatives of p are obtained, on basis of which, we derive an α-robust prior error estimate with optimal H1-norm convergence order. Finally, we provide the numerical experiment to further verify our theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.