Abstract

The article describes the principles of developing RLCP-compatible virtual laboratories. There are build two virtual laboratories based on these principles for mastering the basic algo-rithms on neural networks: Algorithm for Sequential Signal Propagation in Perceptron and Algorithm for Training Perceptron Using Method of Backward Error Propagation. Virtual laboratories consist of two independent modules – a virtual stand and an RLCP server. The virtual stand implements a visual display of the task's data and provides the listener with tools for forming and editing intermediate solutions and responses. Since the virtual laboratories were assumed for the first acquaintance with neural networks, the simplest neural network architectures in the form of single-layer perceptrons were used as the initial data. And the algorithm of sequential propagation of signals in a neural network (VL1) and the algorithm of training a neural network with a teacher based on the method of inverse error propagation (VL2) are used as the basic algorithms. For automatic generation of equally complex and valid tasks there have been proposed algorithms with high efficiency (the average time for generating an individual task on the VL2 stand for a student was no longer than 3 seconds). It was found out experimentally that such virtual laboratories should be created in two modes: the mode of training and mode of certification. The training shop works for solving problems using the studied algorithms on the stands of virtual laboratories in the training mode with the diagnosis of admitted errors significantly increase the effectiveness of students' results

Highlights

  • There are build two virtual laboratories based on these principles for mastering the basic algorithms on neural networks: Algorithm for Sequential Signal Propagation in Perceptron and Algorithm for Training Perceptron Using Method of Backward Error Propagation

  • Virtual laboratories consist of two independent modules – a virtual stand and an RLCP server

  • The virtual stand implements a visual display of the task's data and provides the listener with tools for forming and editing intermediate solutions and responses

Read more

Summary

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ОБРАЗОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ

Национальный исследовательский университет ИТМО, Санкт-Петербург, Российская Федерация. Описаны принципы разработки RLCP-совместимых виртуальных лабораторий, на их основе созданы две виртуальные лаборатории «Алгоритм последовательного распространения сигналов в перцептроне» и «Алгоритм обучения перцептрона на основе метода обратного распространения ошибки» для освоения на практике базовых алгоритмов на нейронных сетях (НС). А в качестве базовых алгоритмов использованы алгоритм последовательного распространения сигналов в НС (ВЛ1) и алгоритм обучения НС с учителем на основе метода обратного распространения ошибки (ВЛ2). А. Создание RLCPсовместимых виртуальных лабораторий для обучения базовым алгоритмам на нейронных сетях // Вестник Астраханского государственного технического университета. В данной статье рассматриваются вопросы, связанные с созданием виртуальных лабораторий на основе протокола RLCP (Remote Laboratory Control Protocol) [2] для обучения базовым алгоритмам на НС и их использованием в электронном практикуме дисциплины «Дискретная математика» [3–6] у студентов Университета ИТМО на 1 курсе. Приведенные здесь результаты экспериментальных исследований подтверждают эффективность использования RLCP-совместимых виртуальных лабораторий в двух режимах – обучение и аттестация

Информационные технологии в образовательной деятельности
Проверка решения Проверка результата
Результаты использования ВЛ в режиме аттестации

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.