Abstract
In recent years, RDF partitioning schemes have been studied for the effective distributed storage and management of large-scale RDF data. In this paper, we propose an RDF dynamic partitioning scheme to support load balancing in dynamic environments where the RDF data is continuously inserted and updated. The proposed scheme creates clusters and sub-clusters according to the frequency of the RDF data used by queries to set graph partitioning criteria. We partition the created clusters and sub-clusters by considering the workloads and data sizes for the servers. Therefore, we resolve the data concentration of a specific server, resulting from the continuous insertion and update of the RDF data, in such a way that the load is distributed among servers in dynamic environments. It is shown through performance evaluation that the proposed scheme significantly improves the query processing time over the existing scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.