Abstract
The superior environmental stability of all-inorganic metal halide perovskites compared to their organic-inorganic counterparts makes them more promising in practical applications. Here, the stability of an archetypical all-inorganic CsPbBr3 single crystal and its single-carrier devices under 60Co γ-ray irradiation was investigated. The CsPbBr3 single crystal itself shows ostensible hardness as its structural and optical properties present imperceptible changes even with a total ionizing dose of 800 krad. Unexpectedly, the single crystal-based single-carrier devices exhibit apparent dose-dependent hardness. The performance of the hole-only device suffers from more deterioration than the electron-only device under high irradiation doses (>400 krad). Our results reveal that such a discrepancy originates from the different influences of γ-ray irradiation-induced defects on the transport behaviors of holes and electrons in CsPbBr3 single-crystal devices. These findings offer a new understanding of the interaction mechanism between γ-photons and all-inorganic metal halide perovskite-based devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.