Abstract

When recent geological calibrations of the 176Lu decay constant are used, the 176Lu– 176Hf ages of chondrites are consistently 4% too old (∼4.75 Ga). Here, we suggest that this discrepancy reflects the photoexcitation of the long-lived 176Lu ground state to the short-lived isomeric state ( T 1/2 = 3.7 h) by γ-rays irradiating early condensates. Irradiation may have been of solar origin and taking place at the inner edge of the nebular disk. Alternatively, the source of γ-rays could have been one or more supernova(e) exploding in the vicinity of the solar nebula. Such photoexcitation has been experimentally observed, but requires γ-ray photons that have energies in excess of 838 keV. At this stage, we cannot assess whether the Hf isotope composition of the Bulk Silicate Earth differs from that of chondrites, eucrites, and the 4.56 Ga old Martian meteorite ALH84001, and therefore, whether the precursor material for these different planetary bodies received comparable fluences of γ-rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.