Abstract
The radiolytic stability of a series of room-temperature ionic liquids (ILs) composed of bis(trifluoromethylsulfonyl)imide anion (Tf2N-) and triethylammonium, 1-butyl-1-methylpyrrolidinium, trihexyl(tetradecyl)phosphonium, 1-hexyl-3-methylpyridinium, and 1-hexyl-3-methylimidazolium (hmim) cations was studied using spin-trap electron paramagnetic resonance (EPR) spectroscopy with a spin-trap α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN). The trapped radical yields were measured as a function of POBN concentration and as a function of radiation dose by double integration of the broad unresolved lines. Well-resolved motionally narrowed EPR spectra for the trapped radicals were obtained by dilution of the ILs with CH2Cl2 after irradiation. The trapped radicals were identified as mainly carbon-centered alkyl and •CF3, and their ratio varies greatly across the series of ILs. Expected nitrogen-centered radicals derived from Tf2N- were not observed. The hmim liquid proved most interesting because a large part of the trapped radical yield (entirely carbon-centered) grew in over several hours after irradiation. We also discovered a complicated narrow-line stable radical signal in this neat IL with no spin trap added, which grows in over several hours after irradiation and decays over several weeks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.