Abstract

A small plasmid (pDK4) from the Antarctic marine organism Pseudoalteromonas sp. PAMC 21150, was purified, sequenced and analyzed. pDK4 was determined to be 3,480 bp in length with a G+C content of 41.64% and contains three open reading frames encoding a replication initiation protein (RepA), a conjugative mobilization protein (Mob) and a hypothetical protein. PCR-amplified pDK4 was cloned in high-copy pUC19 to yield the fusion vector pDOC153. The chloramphenicol resistance gene was inserted into pDOC153 to give an ampicillin and chloramphenicol-resistant, Pseudoalteromonas – Escherichia coli shuttle vector (7,216 bp; pDOC155). The TonB-dependent receptor (chi22718_IV ) and exochitinase (chi22718_III ) genes from Arctic marine P. issachenkonii PAMC 22718 were cloned into pDOC155 to produce pDOC158 and pDOC165, respectively. Both vector derivatives were transferred into plasmid-free Pseudoalteromonas sp. PAMC 22137 by the triparental mating method. PCR experiments showed that the genes were stably maintained both in Pseudoalteromonas sp. PAMC 22137 and E. coli DH5α cells, indicating the potential use of pDOC155 as a new gene transfer system into marine Pseudoalteromonas spp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.