Abstract

We theoretically investigate a possible spontaneous current state in a polarized superfluid Fermi gas confined in a toroidal trap. When one puts a weak nonmagnetic potential barrier in this system, this barrier is known to be magnetized in the sense that some of excess ↑-spin atoms are localized around it (where the ↑-spin describes the majority component of the polarized Fermi gas). Using this unique property, we show that this magnetized barrier, or the pseudo-ferromagnetic junction, induces a spontaneous current circulating along the toroidal trap. While the ordinary supercurrent state appears as a metastable state, this spontaneous current state is realized as the most stable state, originating from the phase twist of the superfluid order parameter by the magnetized potential barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call