Abstract

The electronic nose (e-nose) has been used in food industry and quality controls in plastic packaging. Recently it finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. Moreover, the use of portable e-nose enables the on-site measurements and analysis of vapors without extra gas-sampling units. This is expected to widen the application of the e-nose in various fields including point-of-care-test or e-health. In this study, a PDA-based portable e-nose was developed using micro-machined gas sensor array and miniaturized electronic interfaces. The rich capacities of the PDA in its computing power and various interfaces are expected to provide the rapid and application specific development of the diagnostic devices, and easy connection to other facilities through information technology (IT) infra. For performance verification of the developed portable e-nose system, Six different vapors were measured using the system. Seven different carbon-black polymer composites were used for the sensor array. The results showed the reproducibility of the measured data and the distinguishable patterns between the vapor species. Additionally, the application of two typical pattern recognition algorithms verified the possibility of the automatic vapor recognition from the portable measurements. These validated the portable e-nose based on PDA developed in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call