Abstract

We show that a metastable $\eta$--pairing superconducting phase can be induced by photodoping doublons and holes into a strongly repulsive fermionic Hubbard model. The doublon-hole condensate originates from an intrinsic doublon-hole exchange interaction and does not rely on the symmetry of the half-filled Hubbard model. It extends over a wide range of doublon densities and effective temperatures. Different non-equilibrium protocols to realize this state are proposed and numerically tested. We also study the optical conductivity in the superconducting phase, which exhibits ideal metallic behavior, i.e., a delta function at zero-frequency in the conductivity, in conjunction with a negative conductivity at large frequencies. These characteristic optical properties can provide a fingerprint of the $\eta$-pairing phase in pump-probe experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call