Abstract
Multicomponent seismic data including both P- and PS-waves have advantages in discriminating the type of pore fluid, characterizing the lithologic attributes and producing the high resolution image. However, multicomponent seismic data recorded at the vertical and horizontal component receivers contain both P- and PS-waves which have different features, simultaneously. Therefore, the wavefield separation of P- and PS-waves as a preprocessing is inevitable in order to use the multicomponent seismic data successfully. In this study, we analyzed the previous study of the wavefield separation method suggested by Jeong and Byun in 2011, where the approximated reflection angle calculated only from one refernce depth is used in rotation transform, and showed its limitation for seismic data containing various reflected events from the multi-layered structure. In order to overcome its limitation, we suggested a new effective wavefield separation method of P- and PS-waves. In new method, we calculate the reflection angles with various reference depths and apply rotation transforms to the data with those reflection angles. Then we stack all results to obtain the final separated data. To verify our new method, we applied it to the synthetic data sets from a multi-layered model, a fault model, and the Marmousi-2 model. The results showed that the proposed method separated successfully P- and PS-reflection events from the multicomponent data from mild dipping layered model as long as the dip is not too steep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.