Abstract
An O-operator on an associative algebra is a generalization of a Rota-Baxter operator that plays an important role in the Hopf algebra approach of Connes and Kreimer to the renormalization of quantum field theory. It is also the associative analog of an O-operator on a Lie algebra in the study of the classical Yang-Baxter equation. We introduce the concept of an extended O-operator on an associative algebra whose Lie algebra analog has been applied to generalized Lax pairs and PostLie algebras. We study algebraic structures coming from extended O-operators. Continuing the work of Aguiar deriving Rota-Baxter operators from the associative Yang-Baxter equation, we show that its solutions correspond to extended O-operators through a duality. We also establish a relationship of extended O-operators with the generalized associative Yang-Baxter equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.