Abstract

In this paper, a model of a snow avalanche was created with the help of open source CFD software OpenFOAM. The avalanche is considered as a turbulent two-phase flow - snow and air. We take incompressible Herschel-Balkley fluid as a model of snow. Air is a newtonian fluid. For tracking and locating the free surface we use the volume of fluid (VOF) method. In calculations we use solver interFoam which is based on the VOF method. The K - ε turbulence model was used. Navier-Stokes equations, rheological ratios, equations for turbulent kinetic energy and dissipation are used to determine the model. The avalanche occurred at the 22nd site on the Ukspor mountain was modeled. Computational domain was made using digital terrain model in ASCII GRID format. The shape of snow deposits area was calculated and compared with the real data. The velocity field of flow, pressure distribution, the field of volume snow fraction were obtained for different time instances. The value of the average velocity of the flow was 44,8 m/s, the value of the maximum velocity of the flow (including snow-dust cloud) was 78 m/s. These results allow to determine the avalanche hazard area and help to optimally design the defense systems. In future it is planned to simulate this event using more detailed grids and realize this model in other software for example INMOST or with own code to compare the results.

Highlights

  • A model of a snow avalanche was created with the help of open source CFD software OpenFOAM

  • The avalanche is considered as a turbulent two-phase flow — snow and air

  • For tracking and locating the free surface we use the volume of fluid (VOF) method

Read more

Summary

Введение

В том числе лавины, — распространённое явление в горах. В России они встречаются на Кавказе, в Хибинах, горах Прибайкалья, Забайкалья, на Урале, Чукотке — словом, всюду, где углы падения склонов больше 15°, и имеется снежный покров глубиной 30 - 40 см и выше. Вызываемые обвалами снега, человеческие жертвы, миллионные убытки, невозможность поддержать круглогодичное бесперебойное движение по горным дорогам, требуют уделять большое внимание проблеме борьбы с лавинами, исследовать и моделировать их. Для оценки лавинной опасности при изысканиях и строительстве в лавиноопасных районах необходимо определять наибольшую дальность выброса лавин и возможную силу удара лавинного снега. Для определения силы удара требуется знать скорость движения лавины (точнее, её фронтальной части), а также высоту фронта

Модель движущейся среды
Объект моделирования
Начальные и граничные данные
Результаты

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.