Abstract
The α-NiO/Ni(OH)2/AgNP/F-graphene composite, which is silver nanoparticles preanchored on the surface of fluorinated graphene (AgNP/FG) and then added to α-NiO/Ni(OH)2, is investigated as a potential battery material. The addition of AgNP/FG endows the electrochemical redox reaction of α-NiO/Ni(OH)2 with a synergistic effect, resulting in enhanced Faradaic efficiency with the redox reactions of silver accompanied by the OER and the ORR. It resulted in enhanced specific capacitance (F g-1) and capacity (mA h g-1). The specific capacitance of α-NiO/Ni(OH)2 increased from 148 to 356 F g-1 with the addition of AgNP(20)/FG, while it increased to 226 F g-1 with the addition of AgNPs alone without F-graphene. The specific capacitance of α-NiO/Ni(OH)2/AgNP(20)/FG further increased up to 1153 F g-1 with a change in the voltage scan rate from 20 to 5 mV/s and the Nafion-free α-NiO/Ni(OH)2/AgNP(20)/FG composite. In a similar trend, the specific capacity of α-NiO/Ni(OH)2 increased from 266 to 545 mA h g-1 by the addition of AgNP(20)/FG. The performance of hybrid Zn-Ni/Ag/air electrochemical reactions by α-NiO/Ni(OH)2/AgNP(200)/FG and Zn-coupled electrodes indicates a potential for a secondary battery. It results in a specific capacity of 1200 mA h g-1 and a specific energy of 660 W h kg-1, which is divided into Zn-Ni reactions of ∼95 W h kg-1 and Zn-Ag/air reactions of ∼420 W h kg-1, while undergoing a Zn-air reaction of ∼145 W h kg-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.