Abstract

Photoluminescence, Raman spectroscopy and X-ray photoelectron spectroscopy are used to study electronic and atomic structure of n-InP(100) surfaces treated with different sulfide solutions. It is shown that the sulfide treatment causes removal of the native oxide layer from the semiconductor surface and formation of the passivating layer consisting of In−S chemical bonds with the structure dependent on the solution composition and atomic arrangement at the initial surface of the semiconductor. This is accompanied by an increase in photoluminescence intensity and narrowing of the surface depletion layer. Atomic structure of the passivating layer determines the total dipole that modifies the depth distribution of the bands potentials and thus the surface electronic structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.