Abstract

The weakly alkaline microenvironment (pH ~8.0) in mitochondria plays a vital role in maintaining its morphology and function. Thus monitoring mitochondrial pH (pHmito) is of great significance. Herein, a ratiometric fluorescent probe (ENBT) for pHmito imaging in mitochondria of living cells is reported. pH variation closely correlates to intramolecular charge transfer (ICT) from naphthol to β-naphthothiazolium. ENBT exhibits a remarkable decrease on ratiometric fluorescence at λem1/λem2 = F595/F700 in response to pH variation within 6.30–9.29. In addition, ENBT has an ideal pKa value of 7.94 ± 0.08, which is advantageous in accurate sensing of pHmito. Moreover, ENBT has a Stokes shift of >150 nm, which effectively eliminates the potential interference from the excitation irradiation. ENBT shows excellent capability for specific staining of mitochondria with low cytotoxicity, which is most suitable for pHmito imaging in live cells. The probe was applied for monitoring pHmito variation in mitochondria of live cells caused by H2O2, NAC (N-Acetyl-l-cysteine), NH4Cl, carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and lactate/pyruvate. The morphological alterations of mitochondria in living cells after treatment by CCCP were further evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.