Abstract

AbstractA quantitative model for charge accumulation in an undergate dielectric during tunneling electron injection from a gate according to the Fowler–Nordheim mechanism is developed. The model takes into account electron and hole capture at hydrogen-free and hydrogen-related traps as well as the generation of surface states during the interaction of holes with hydrogen-related centers. The experimental dependences of the threshold voltage shift and gate voltage shift of n - and p -channel MOS (metal–oxide–semiconductor) transistors on the injected charge in the constant current mode are analyzed based on the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.