Abstract
The paper investigates the application of Markov‐Switching MIDAS (Mixed Data Sampling) models to nowcasting of Russian GDP and its components. Different methods to get the resulting nowcast based on nowcasts under different regimes are proposed: weighted by regime probabilities, most probable regime, and perfectly predicted regime nowcasts. The model obtained is compared with standard econometric nowcasting models. Among all the models tested, Markov‐Switching MIDAS model with perfectly predicted regime yields the best results for most of the series analyzed. MS MIDAS models without perfect regime foresight also perform better than standard MIDAS models and MFBVAR models for most of the series analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.