Abstract

The change of the electronic performance of NMOS transistors caused by mechanical stress was measured by applying a four-point bending method. The change rate of the transconductance of NMOS transistors increased to about 15%/100-MPa by decreasing the gate length from 400nm to 150nm. In addition, the local residual stress in the stacked chips mounted by a flip chip technology was measured by utilizing piezoresistive stress sensors with 2-μm long gauges. The amplitude of the residual stress in the top chip was almost constant of about 220MPa regardless of the bottom bump alignment. On the other hand, the amplitude of the residual stress in the bottom chip decreased to about 80MPa depending on the relative position of bumps between the top and bottom chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.