Abstract

본 연구에서는 암석 열전도도 측정을 위해 많이 사용하고 있는 Laser flash method와 Divided-bar method의 장단점을 비교 분석하여 자체 제작한 Divided-bar apparatus의 적용 가능성을 분석하고자 하였다. Laser flash method는 비접촉식으로 아주 작은 시료(두께 3 mm 이하)에 적합하며, 높은 온도(<TEX>$25^{\circ}C{\sim}200^{\circ}C$</TEX>)의 범위까지 비열, 열확산률, 열전도도 측정이 가능하다. 시료의 조건은 물질이 균등, 균일해야 한다. 반면 Divided-bar method는 주로 상온에서 열전도도만 측정할 수 있다. 밀도가 낮고 공극이 큰 12개의 암석 시료를 두 가지 방법으로 측정 분석해 보았다. Laser flash method로 측정한 결과, 암석 시료 표면의 공극 분포가 일정하지 않으며, 광물 조성이 균등, 균일하지 않아 표면에 laser pulse로 열을 가할 때 반사 및 산란작용의 영향으로 시료 전면과 반대면으로 측정했을 때의 열전도도 차이가 0.001~0.140 W/mK 범위, 표준편차 0.003~0.089 W/mK 범위로 나타났다. divided-bar apparatus의 경우, 비교적 두꺼운 암석 시료를 측정할 수 있어 암석 열전도도 대표성이 높고, 시료를 밀착하여 열전달을 하므로 전면과 반대면으로 측정했을 때의 열전도도 차이는 0.001~0.016 W/mK, 표준편차 0.001~0.034 W/mK 범위로 Laser flash method에 비해 비교적 안정된 값을 보인다. In this study, we conducted the study of the merits and demerits of the laser flash and the divided-bar methods for measuring the thermal conductivity of rocks and investigated applicability of the divided-bar apparatus which was developed by KIGAM. The laser flash method can measure thermal diffusivity, specific heat capacity, and thermal conductivity of rocks with even small thickness (< ~3 mm) in the high temperature range(<TEX>$25-200^{\circ}C$</TEX>) in non-contact mode. For the laser flash method, samples must be uniform and homogeneous. In the case of the divided-bar method, the apparatus measures only thermal conductivity of rock samples at the room temperature. We measured thermal conductivities of 12 rock samples with low density and high porosity using two methods. In the laser flash method, there exist potential errors caused by the effect of pulse dispersion and reflection by various minerals and porosity in rock samples; the difference in thermal conductivity values measured on the front surface and the opposite surface ranges from 0.001 to 0.140 W/mK with the standard deviation of 0.003~0.089 W/mK, which seems to be caused by heterogeneity of rock samples. On the contrary, the divided-bar apparatus shows stable thermal conductivity measurements and relatively small measurement errors; the difference in thermal conductivity values, just as we applied to the laser frash method, is 0.001~0.016 W/mK with the standard deviation 0.001~0.034 W/mK. In turn, the divided-bar method can be applied to more thick samples that are more representative of bulk thermal conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call