Abstract

BackgroundCandida albicans is the most important fungal pathogen that causes infections in humans, and the search for new therapeutic strategies for its treatment is essential. ObjectiveThe aim of this study was to evaluate the activity of seven naphthoquinones (β-lapachone, β-nor-lapachone, bromide-β-lapachone, hydroxy-β-lapachone, α-lapachone, α-nor-lapachone and α-xyloidone) on the growth of a fluconazole-resistant C. albicans oral clinical isolate and the effects of these compounds on the viability of mammalian cells, on yeast's morphogenesis, biofilm formation and cell wall mannoproteins availability. ResultsAll the compounds were able to completely inhibit the yeast growth. β-lapachone and α-nor-lapachone were the less cytotoxic compounds against L929 and RAW 264.7 cells. At IC50, β-lapachone inhibited morphogenesis in 92%, while the treatment of yeast cells with α-nor-lapachone decreased yeast-to-hyphae transition in 42%. At 50μg/ml, β-lapachone inhibited biofilm formation by 84%, whereas α-nor-lapachone reduced biofilm formation by 64%. The treatment of yeast cells with β-lapachone decreased cell wall mannoproteins availability in 28.5%, while α-nor-lapachone was not able to interfere on this virulence factor. Taken together, data show that β-lapachone and α-nor-lapachone exhibited in vitro cytotoxicity against a fluconazole-resistant C. albicans strain, thus demonstrating to be promising candidates to be used in the treatment of infections caused by this fungus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call