Abstract

Prepulse inhibition (PPI) is the reduction in the startle response caused by a low intensity non-startling stimulus (the prepulse) which is presented shortly before the startle stimulus and is an operational measure of sensorimotor gating. PPI is impaired in psychiatric disorders such as schizophrenia. Ketamine, a non-competitive N-methyl-D-aspartate antagonist has been shown to induce schizophrenia-like behavioural changes in humans and PPI deficits in rats, which can be reversed by antipsychotics. Thus, ketamine-induced PPI deficits in rats may provide a translational model of schizophrenia. The aim of this study was to investigate the effects of antipsychotic drugs and drugs known to alter the glutamate system upon ketamine-induced PPI deficits in rats. Rats were habituated to the PPI procedure [randomized trials of either pulse alone (110 dB/50 ms) or prepulse + pulse (80 dB/10 ms)]. Animals were assigned to pre-treatments based on the level of PPI on the last habituation test and balanced across startle chambers. Ketamine (1-10 mg/kg s.c; 15 min ptt) increased startle amplitude and induced PPI deficits at 6 and 10 mg/kg. PPI deficits induced by ketamine at 6 mg/kg were not attenuated by clozapine (2.5-10 mg/kg s.c.; 60 min ptt), risperidone (0.1-1 mg/kg i.p.; 60 min ptt), haloperidol (0.1-1 mg/kg i.p.; 60 min ptt), lamotrigine (3-30 mg/kg p.o.; 60 min ptt), or SB-271046-A (5-20 mg/kg p.o.; 2 hour ptt) nor potentiated by 2-methyl-6-(phenylethynyl)-pyridine (3-10 mg/kg i.p.; 30 min ptt). These results suggest that under these test conditions ketamine-induced PPI deficits in rats is relatively insensitive and does not represent a translational model for drug discovery in schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.