Abstract

순서화된 척도모수들의 사전정보를 가지는 k-모집단 와이블분포의 모수추정을 위한 베이지안방법이 제시된다. 모수추정은 깁스샘플링에 의해서 이루어지며, 특히 깁스샘플러에서 형태모수의 조건부 사후분포는 로그-오목함수이므로 적응기각표집(Adaptive Rejection Sampling: ARS)방법에 의해 모수생성을 하였다. 논의된 모수추정법을 전기 절연유체 고장시간자료에 적용하여 척도모수의 순서화정보를 반영한 경우와 그렇지 않은 경우를 비교하였다. The problem of estimating the parameters of k-population Weibull distributions is discussed under the prior of ordered scale parameters. Parameters are estimated by the Gibbs sampling method. Since the conditional posterior distribution of the shape parameter in the Gibbs sampler is not log-concave, the shape parameter is generated by the adaptive rejection sampling. Finally, we applied this estimation methodology to the data discussed in Nelson (1970).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.