Abstract

It has been previously shown that the chemically synthesized nanocomposite of selenium with arabinogalactan (NC Se/AG) is characterized by antibacterial effect upon the agent of ring rot – gram-positive bacterium Clavibacter sepedonicus (Cms), with the NC Se/AG having no negative effect on potato plants. In the present paper, it has been found that, 1 hour after the treatment of the NC Se/AG, a substantial elevation of lipid peroxidation products was observed in potato root tissues. This supports earlier results on the increase in reactive oxygen species (ROS) production in potato root tissues under the influence of NC Se/AG. It is proposed that the increased ROS content in potato may inhibit pathogen colonization of plants. This has been tested by seeding homogenised plant tissues of various potato zones (roots, stems, shoot apex zone) onto the nutrient medium. In plants infected with Cms and untreated with the NC, the number of colony forming units (CFUs) of Cms has been shown to be numerous both in potato culture medium and in root and stem tissues. In shoot apex zone of such plants, it has been revealed, bacteria also present, but in smaller quantities. Similar data have been obtained by seeding homogenised tissues from roots and stems of potato plants treated with the NC followed by infection with Cms. However, seeding from shoot apex zones of the plants has been given 4 times less CFUs than from potato plants not treated with the NC. The effect of the NC Se/AG upon the pathogen colonization of plants appears to depend on the titre of the microorganism. In shoot apex zone of plants, characterized with small number of CFUs of Cms, the pathogen growth has been decreased. For the first time, Cms bacteria in potato plant tissues in vitro have been visualized with the aid of scanning microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.