Abstract
This paper presents our findings on using skeletons of marine sponge Ianthella basta as the carriers for human mesenchymal stromal cells (MSC), evaluating their biocompatibility with the cells, as well as the assessment of cryosensitivity of the cells, growing within these carriers to cryopreservation under protection of 10% DMSO and 20% fetal bovine serum according to the method developed for MSC suspension (slow cooling with 1 deg/min rate, rapid thawing at 37°Ði). Network-like chitin carriers consisting of chitin fibrils were derived from marine sponge Ianthella basta skeletons by acid-base hydrolysis. During culturing in vitro these carriers supported adhesion, migration and proliferation of MSCs. After cryopreservation we observed a decrease in cell viability with their metabolic activity of 46.8±5.8% in respect to the native specimens and it did not reduce to day 1 of reculture. As proceeded from the reported findings, the skeletons from marine sponge Ianthella basta are the new promising source for carriers to be used in tissue engineering and regenerative medicine. This research may serve the basis for further developing the cryopreservation methods for stem cells within 3-D tissue-engineered scaffolds. Probl Cryobiol Cryomed 2016; 26(1):13-23.
Highlights
This paper presents our findings on using skeletons of marine sponge Ianthella basta as the carriers for human mesenchymal stromal cells (MSC), evaluating their biocompatibility with the cells, as well as the assessment of cryosensitivity of the cells, growing within these carriers to cryopreservation under protection of 10% DMSO and 20% fetal bovine serum according to the method developed for MSC suspension
Materials and methods To isolate chitin samples the frozen-dried skeletons of marine sponge Ianthella basta were treated by acid-base hydrolysis [4, 6]
The demineralized chitin carriers from marine sponge Ianthella basta skeletons showed the biocompatibility with MSCs in vitro and enabled cell growth up to the formation of cell sheets filling the pores
Summary
This paper presents our findings on using skeletons of marine sponge Ianthella basta as the carriers for human mesenchymal stromal cells (MSC), evaluating their biocompatibility with the cells, as well as the assessment of cryosensitivity of the cells, growing within these carriers to cryopreservation under protection of 10% DMSO and 20% fetal bovine serum according to the method developed for MSC suspension (slow cooling with 1 deg/min rate, rapid thawing at 37°С). В настоящее время вызывает интерес уникальный биотехнологический потенциал морских губок, которые могут стать источником новых альтернативных носителей, структурированность которых имеет природный характер. Cryoresistance in suspended cells is supported by spherical shape of cells and their free floating in the medium, facilitating an easy change in cell volume in response to increasing concentrations of substances in extra-cellular medium and allowing to avoid mechanical damage by advancing front of growing ice crystals [3]. These phenomena are not possible if cells are flattened and their position is fixed by cell-to-cell and/or cell-substrate contacts [2, 19]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.