Abstract

Many numerical and analytical models have been developed for estimation of soil water distribution in order to increase water use efficiency in drip irrigation. Accurate solution of well-known soil water equation, Richard’s equation, in these models cause more accurate estimation of soil wetting front. The purpose of this study was to evaluate finite difference and finite element methods to numerical solution of Richard’s equation for simulating soil water flow around dripper via comparing HYDRUS-2D and SEEP/W numerical models. Experiments were carried out to collect required data to investigate the advance of moisture front inside a Plexiglas box filled with a silt loam soil in central laboratory of water researches in University of Tehran. Wetting front advance at different time intervals were plotted on the transparent Plexiglas box walls. The wetting front around the emitters, for pressures 1.5 and 2.2 meters (equivalent to 4.5 and 6.3 liters per hour, respectively), were measured. Comparison of two simulation models, HYDRUS-2DandSEEP/W, showed that HYDRUS-2D model (finite difference solution method) with higher determination coefficient and lower root mean square error coefficient had better performance to simulate wetted area dimensions for both surface and subsurface drip irrigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.