Abstract

An efficient and practical strategy for the synthesis of (3R,4s,5S)-4-(2-hydroxyethyl) piperidine-3,4,5-triol and its N-alkyl derivatives 8a–f, starting from the d-glucose, is reported. The chiral pool methodology involves preparation of the C-3-allyl-α-d-ribofuranodialdose 10, which was converted to the C-5-amino derivative 11 by reductive amination. The presence of C-3-allyl group gives an easy access to the requisite hydroxyethyl substituted compound 13. Intramolecular reductive aminocyclization of C-5 amino group with C-1 aldehyde provided the γ-hydroxyethyl substituted piperidine iminosugar 8a that was N-alkylated to get N-alkyl derivatives 8b–f. Iminosugars 8a–f were screened against glycosidase enzymes. Amongst synthetic N-alkylated iminosugars, 8b and 8c were found to be α-galactosidase inhibitors while 8d and 8e were selective and moderate α-mannosidase inhibitors. In addition, immunomodulatory activity of compounds 8a–f was examined. These results were substantiated by molecular docking studies using AUTODOCK 4.2 programme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.