Abstract

This scoping review aimed to summarise the effects of the ketone body β-hydroxybutyrate. The review details the revealed pathways and functional properties following its intervention in the context of neurodegenerative diseases. In this study, 5 research publications that met the inclusion and exclusion criteria were shortlisted. Following the intervention, we discovered a tendency of reduced inflammatory status in microglia, as evidenced by lower levels of pro-inflammatory mediators produced, reduced microgliosis in afflicted tissues, and enhanced cognitive functions in neurodegenerative models. We found that there is a significant overlap in the mechanism of action of β-hydroxybutyrate (BHB) via activation of the G-protein-Coupled Receptor 109A (GPR109a) receptor and deactivation of the inflammasome complex. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we have assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed new studies where BHB is involved in various roles in regulating inflammation in microglia, allowing for fresh therapeutic targets against neurodegeneration. This brief review provides evidence to support the huge potential of BHB in the treatment of neurodegenerative illnesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call