Abstract

Accumulation of collagen 4 (COL4) and thickened basement membrane are features of diabetic cardiac microvascular fibrosis that may be induced by oxidative stress. The ketone body β-hydroxybutyrate exhibits various cardiovascular protective effects, however its mechanism remains to be clarified. In the current study, the effects of β-hydroxybutyrate on cardiac microvascular fibrosis and COL4 accumulation were evaluated in streptozotocin-induced diabetic rats and in high glucose (HG) treated human cardiac microvascular endothelial cells (HCMECs). Generations of inducible nitric oxide synthase (iNOS) and copper-zinc superoxide dismutase (Cu/Zn-SOD), and the amount of nitrotyrosine (NT) were measured in vivo and in vitro. Ten weeks of β-hydroxybutyrate treatment (160, 200 and 240 mg/kg/d) attenuated cardiac microvascular fibrosis and inhibited cardiac COL4 generation and microvascular distribution in diabetic rats. Furthermore, β-hydroxybutyrate promoted cardiac Cu/Zn-SOD generation and reduced NT content, without reducing iNOS generation in diabetic rats. In HCMECs, stimulation with HG induced excess generation of COL4 via peroxynitrite. β-Hydroxybutyrate treatment (2, 4, 6 mM) attenuated HG-stimulated COL4 accumulation in a concentration-dependent manner. Similarly, 4 mM β-hydroxybutyrate promoted Cu/Zn-SOD generation and reduced NT content, without affecting excess iNOS generation in HG-stimulated HCMECs. In conclusion, this study showed that β-hydroxybutyrate promoted Cu/Zn-SOD generation, reduced peroxynitrite and inhibited cardiac microvascular COL4 accumulation in diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call