Abstract

Gamma-hydroxybutyrate is found both naturally in the brain and self-administered as a drug of abuse. It has been reported to act at endogenous γ-hydroxybutyrate (GHB) receptors and GABA(B) receptors [GABA(B)R], and may also be metabolized to GABA. Here, the metabolic fingerprints of a range of concentrations of GHB were measured in brain cortical tissue slices and compared with those of ligands active at GHB and GABA-R using principal components analysis (PCA) to identify sites of GHB activity. Low concentrations of GHB (1.0 μM) produced fingerprints similar to those of ligands active at GHB receptors and α4-containing GABA(A)R. A total of 10 μM GHB clustered proximate to mainstream GABAergic synapse ligands, such as 1.0 μM baclofen, a GABA(B)R agonist. Higher concentrations of GHB (30 μM) clustered with GABA(C)R agonists and the metabolic responses induced by blockade of the GABA transporter-1 (GAT1). The metabolic responses induced by 60 and 100 μM GHB were mimicked by simultaneous blockade of GAT1 and GAT3, addition of low concentrations of GABA(C)R antagonists, or increasing cytoplasmic GABA concentrations by incubation with the GABA transaminase inhibitor vigabatrin. These data suggest that at concentrations > 30 μM, GHB may be active via metabolism to GABA, which is then acting upon an unidentified GABAergic master switch receptor (possibly a high-affinity extrasynaptic receptor), or GHB may itself be acting directly on an extrasynaptic GABA-R, capable of turning off large numbers of cells. These results offer an explanation for the steep dose-response curve of GHB seen in vivo, and suggest potential target receptors for further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.