Abstract

This study reports a sonochemical approach for the synthesis and catalytic performance of zerovalent iron nanoparticles (nZVI) capped with two cyclodextrin (CD) crosslinked polymers derived from Lactic acid and Citric acid (CDLA and CDCA respectively). The polymers and the catalysts were characterized by NMR, FTIR, HRTEM, DLS, Zeta potential, FESEM, EDAX, VSM, XRD, XPS, TGA analysis. The catalysts proved to be sustainable and recyclable for rapid sonochemical reduction of nitroaromatics under ambient conditions. The isolated yield of the derivatives was found to be greater than 90%. The results suggest excellent dispersibility, stability, high iron content and smaller size of CDLA polymer capped nZVI compared to CDCA capped nZVI, leading to two-fold higher catalytic activity. The effect of various crucial catalysis parameters was investigated and optimized. The scope of the reaction was extended to other nitroaromatics under the optimized conditions. Being magnetically separable, the cost effective and non-toxic catalysts exhibited high recycling efficiency (~13 cycles), high turnover number (TON) and turnover frequency (TOF). The recyclable catalysts could be low-cost and sustainable options for organic transformation in water via sonochemical approach in aqueous medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call