Abstract

In this study, we have explored the conformational landscape of the indole···furan dimer in a supersonic jet by using resonant two-photon ionization (R2PI) and IR-UV double-resonance spectroscopic techniques combined with dispersion-corrected density functional theory (DFT) calculations. Only one conformer of the dimer has been observed in the experiment. DFT/B97-D level calculation shows that N-H···π hydrogen-bonded conformer (T') is energetically more stable than the N-H···O hydrogen-bonded conformer (HB). Natural bond orbital (NBO) calculation also shows that the hydrogen-bonding interaction in the HB conformer is very weak. Finally, the structure of the observed dimer has been determined to be tilted T-shaped N-H···π hydrogen-bonded (T') from very excellent agreement between experimental and theoretical N-H stretch frequency. The most significant finding of this study is the first-time observation of a N-H···π bound conformer of a dimer, which wins over a conventional hydrogen-bonded conformer of the dimer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.