Abstract
The anisotropic electronic densities of covalently-bonded Group IV-VII atoms frequently give rise to regions of positive electrostatic potential on the extensions of covalent bonds to these atoms. Through such positive "σ-holes," the atoms can interact attractively and highly directionally with negative sites such as the lone pairs of Lewis bases, anions, π electrons, etc. In the case of Group VII this is called "halogen bonding." Hydrogen bonding can be viewed as a less directional subset of σ-hole interactions. Since positive σ-holes often exist in conjunction with regions of negative potential, the atoms can also interact favorably with positive sites. In accordance with the Hellmann-Feynman theorem, all of these interactions are purely Coulombic in nature (which encompasses polarization and dispersion). The strength of σ-hole bonding increases with the magnitudes of the potentials of the positive σ-hole and the negative site; their polarizabilities must sometimes also be taken explicitly into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.