Abstract

The inhibition of protein-protein interactions using small molecules is a viable approach for the treatment of a range of pathological conditions that result from a malfunctioning of these interactions. Our strategy for the design of such agents involves the mimicry of side-chain residues on one face of the alpha-helix; these residues frequently play a key role in mediating protein-protein interactions. The first-generation terphenyl scaffold, with a 3,2',2''-substitution pattern, is able to successfully mimic key helix residues and disrupt therapeutically relevant interactions, including the Bcl-X(L)-Bak and the p53-hDM2 (human double minute 2) interactions that are implicated in cancer. The second- and third-generation scaffolds have resulted in greater synthetic accessibility and more drug-like character in these molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.