Abstract
A study has been conducted numerically to investigate the lifted flat syngas flame structure of impinging jet flame configuration with the global strain rates in 10% hydrogen content. In this study, the effects of strain rate were major parameters on chemistry kinetics and flame structure at stagnation point. The numerical results were calculated by SPIN application of the CHEMKIN package. The strain rates were adjusted with Reynolds numbers of premixed syngas-air mixture. Different flame shapes were observed with different strain rates. As strain rate has increased, the flame temperature and axial velocity have been decreased due to the flame heat loss increment, and the OH radical reaction zones become narrower but each mole fractions are still constant. Also, the reversion of H2O product near stagnation point has been found out when strain rate has increased. This phenomenon is attributed to the rapid production of oxidizing radical reaction such as the R12 (H+O2(+M) = HO2(+M)), which makes the R18 (HO2 + OH = O2 + H2O) reaction increment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Korean hydrogen and new energy society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.