Abstract
Activity recognition technology is gaining attention because it can provide useful information follow user’s situation. In research of activity recognition before smartphone’s dissemination, we had to infer user’s activity by using independent sensor. But now, with development of IT industry, we can infer user’s activity by using inner sensor of smartphone. So, more animated research of activity recognition is being implemented now. By applying activity recognition system, we can develop service like recommending application according to user’s preference or providing information of route. Some previous activity recognition systems have a defect using up too much energy, because they use GPS sensor. On the other hand, activity recognition system which Google released recently (Google Activity Recognition) needs only a few power because it use ‘Network Provider’ instead of GPS. Thus it is suitable to smartphone application system. But through a result from testing performance of Google Activity Recognition, we found that is difficult to getting user’s exact activity because of unnecessary activity element and some wrong recognition. So, in this paper, we describe problems of Google Activity Recognition and propose AGAR(Advanced Google Activity Recognition) applied method to improve accuracy level because we need more exact activity recognition for new service based on activity recognition. Also to appraise value of AGAR, we compare performance of other activity recognition systems and ours and explain an applied possibility of AGAR by developing exemplary program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: KIPS Transactions on Software and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.