Abstract

β-Glucosidase is a biological macromolecule that catalyzes the hydrolysis of various glycosides and oligosaccharides. It may also be used to catalyze the synthesis of glycosides under suitable conditions. Carrier-bound β-glucosidase can enhance the enzymatic activity in the synthesis of glycosides in organic solvent solutions, although the molecular mechanism regulating activity is yet unknown. This study investigated the impact of utilizing montmorillonite (Mmt), attapulgite (Attp), and kaolinite (Kao) as carriers on the activity of β-glucosidase from Prunus dulcis (PdBg). When Attp was used as carriers, the molecular dynamic (MD) simulations found the distance between pNPG and the active site residues E183 and E387 was minimally impacted by the adsorptions, hence PdBg maintained about 81.3 ± 0.89 % of its native activity. Out of the three clay minerals, the relative activity of PdBg loaded on Mmt was the lowest because of the highest electrostatic energy. The substrate channel of PdBg on Kao is directed towards the surface, limiting the accessibility of substrates. Secondary structure and conformation studies revealed that the conformational stability of PdBg in solvent solutions was enhanced by coupling to Attp. Unlike dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) and 1,2-dimethoxyethane (DME), tert-butanol (t-BA) did not penetrate into the active site of PdBg interfering with its binding to the substrate. The maximum yield of n-octyl-β-glucoside (OGP) synthesis catalyzed by Attp-immobilized PdBg reached 48.3 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.