Abstract

The α-glucosidase inhibitor is regarded as one of the most important drugs for the treatment of diabetes, which can control postprandial blood glucose levels via prolonging the carbohydrate digestion time and retarding the carbohydrates’ absorption. The present work aims to establish a facile bioanalytical method, based on α-glucosidase catalyzing the hydrolysis of 2-O-alpha-D-Glucopyranosyl-L-ascorbic acid (AA-2G), for the quantification of acarbose and migliol using a personal glucose meter (PGM). The hydrolysis products (ascorbic acid and glucose) can trigger the reduction of K3[Fe(CN)6] to K4[Fe(CN)6] in the glucose test strips, which results in the formation of the electron, which can be measured by PGM. Thus, ascorbic acid and glucose can be simultaneously measured by a simplified and miniaturized PGM method. However, the products produced by the hydrolysis of AA-2G will be decreased after the addition of acarbose or migliol to inhibit the activity of α-glucosidase, thereby resulting in a decreased PGM readout. After being incubated with α-glucosidase for 3.0 min and enzymatic reaction for 5.0 min, the quantitative detection of acarbose and migliol can be achieved within the ranges of 1.0–30.0 μM with the limit of detection of 0.33 μM and 3.0–33.3 μM with the limit of detection of 1.0 μM, respectively. IC50 values for acarbose and migliol are calculated to be 10.0 μM and 16.0 μM, respectively. The recoveries of the acarbose and migliol spiked with three different concentrations (final concentrations of 10.0, 20.0, and 30.0 μM) in human serum sample are in the ranges of 89.6–114.5% and 93.9–106.5%, respectively. These results demonstrate that the developed PGM method may be useful in future studies on therapeutic monitoring of acarbose and migliol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call