Abstract

A mixture of three distinct cerium precursors (Ce(NO3)3·6H2O, CeCl3·7H2O, and Ce(CH3COO)3·H2O) was used to prepare cerium oxide nanoparticles (CeO2 NPs) in a polyol-mediated synthesis. Different ratios of diethylene glycol (DEG) and H2O were utilized in the synthesis. The properties of the synthesized CeO2 NPs, such as structural and morphological properties, were investigated to observe the effect of the mixed cerium precursors. Crystallite sizes of 7-8 nm were obtained for all samples, and all synthesized samples were confirmed to be in the cubic phase. The average particle sizes of the spherical CeO2 were between 9 and 13 nm. The successful synthesis of CeO2 can also be confirmed via the vibrational band of Ce-O from the FTIR. Antidiabetic properties of the synthesized CeO2 NPs were investigated using α-glucosidase enzyme inhibition assay, and the concentration of the synthesized CeO2 NPs was varied in the study. The biocompatibility properties of the synthesized CeO2 NPs were investigated via cytotoxicity tests, and it was found that all synthesized materials showed no cytotoxic properties at lower concentrations (62.5-125 μg/mL).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call