Abstract

The innate immune response is able to ward off pathogens and remember previous infections using different mechanisms; this kind of immune reaction has been called “trained immunity”. Changes in cellular metabolism (aerobic glycolysis) have been observed during training with some immunostimulants like β-glucans or during viral and bacterial infections. We hypothesize that β-glucans can induce metabolic changes used by the host to fight pathogens. Accordingly, we evaluated changes in metabolic parameters in turbot that could affect their survival after a previous intraperitoneal treatment with β-glucans and subsequent administration of Viral Hemorrhagic Septicemia Virus (VHSV) or bacteria (Aeromonas salmonicida subsp. salmonicida). The results obtained support that β-glucans, VHSV and A. salmonicida induce changes in lactate, glucose and ATP levels in plasma, head kidney and liver and in the mRNA expression of enzymes related to glucose and fatty acid metabolism in head kidney. Additionally, the metabolic changes induced by β-glucans are beneficial for VHSV replication, but they are harmful to A. salmonicida, resulting in reduced mortality. β-glucans appear to have great therapeutic potential and can induce trained immunity against bacterial disease but not against viral disease, which seems to take advantage of β-glucan metabolic alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.