Abstract

Near-infrared (NIR) aggregation induced-emission luminogens (AIEgens) circumvent the noisome aggregation-caused quenching (ACQ) effect in physiological milieu, thus holding high promise for real-time and sensitive imaging of biomarkers in vivo. β-Galactosidase (β-Gal) is a biomarker for primary ovarian carcinoma, but current AIEgens for β-Gal sensing display emissions in the visible region and have not been applied in vivo. We herein propose an NIR AIEgen QM-TPA-Gal and applied it for imaging β-Gal activity in vitro and in ovarian tumor model. After being internalized by ovarian cancer cells (e.g., SKOV3), the hydrophilic nonfluorescent QM-TPA-Gal undergoes hydrolyzation by β-Gal to yield hydrophobic QM-TPA-OH, which subsequently aggregates into nanoparticles to turn NIR fluorescence “on” through the AIE mechanism. In vitro experimental results indicate that QM-TPA-Gal has a sensitive and selective response to β-Gal with a limit of detection (LOD) of 0.21 U/mL. Molecular docking simulation confirms that QM-TPA-Gal has a good binding ability with β-Gal to allow efficient hydrolysis. Furthermore, QM-TPA-Gal is successfully applied for β-Gal imaging in SKOV3 cell and SKOV3-bearing living mouse models. It is anticipated that QM-TPA-Gal could be applied for early diagnosis of ovarian cancers or other β-Gal-associated diseases in near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.