Abstract
The diode p-(Ga,Mn)As/n-InGaAs/n+-GaAs heterostructures, which differ in thickness (from 5 to 50 nm) of a diluted magnetic semiconductor (Ga,Mn)As layer, were fabricated and studied. We found the negative magnetoresistance effect, reaching 6–8% in a 3600 Oe magnetic field. The effect was conserved up to temperatures of 70–80 K and associated with a decrease in charge carrier scattering due to ferromagnetic ordering in the (Ga,Mn)As layer. The dependence of the magnetoresistance on the forward bias voltage is nonmonotonic with the maximum magnetoresistance and its observation voltage range depending on the (Ga,Mn)As layer thickness. The magnetic field dependences of the magnetoresistance have a hysteretic shape due to the influence of tensile stresses in the (Ga,Mn)As layer grown on top of the relaxed InGaAs material on the appearance of the magnetization component, perpendicular to the structure surface.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.