Abstract

A series of new β-functionalized push-pull-structured porphyrin dyes were synthesized so as to investigate the effect of the π-conjugated spacer on the performance of dye-sensitized solar cells (DSSCs). Suzuki- and Heck-type palladium-catalyzed coupling methodologies were used to obtain various β-functionalized porphyrins and β-benzoic acid (ZnPHn) and β-vinylbenzoic acid (ZnPVn) derivatives from β-borylated porphyrin precursors. Photophysical studies of the resulting porphyrins revealed a clear dependence on the nature of the β linker. In particular, it was found that a β-vinylene linkage perturbs the electronic structure of the porphyrin core; this is less true for a β-phenyl linkage. Theoretical analyses provided support for the intrinsic intramolecular charge-transfer character of the β-functionalized, push-pull porphyrins of this study. The extent of charge transfer depends on the nature of the β-conjugated linkage. The photovoltaic performances of the cells sensitized with β-phenylenevinylene ZnPVn exhibited higher power conversion efficiency values than those bearing β-phenyl linkages (ZnPHn). This was ascribed to differences in light-harvesting efficiency. Furthermore, compared to the use of a standard iodine-based electrolyte, the DSSC performance of cells made from the present porphyrins was improved by more than 1 % upon using a cobalt(II/III)-based electrolyte. Under standard AM 1.5 illumination, the highest efficiency, 8.2 %, was obtained by using cells made from the doubly β-butadiene-linked porphyrin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.