Abstract
We discuss the role of the multiplicative anomaly for a complex scalar field at finite temperature and density. It is argued that physical considerations must be applied to determine which of the many possible expressions for the effective action obtained by the functional integral method is correct. This is done by first studying the non-relativistic field where the thermodynamic potential is well-known. The relativistic case is also considered. We emphasize that the role of the multiplicative anomaly is not to lead to new physics, but rather to preserve the equality among the various expressions for the effective action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.