Abstract

With a limited number of polynomial terms (so-called “streams”), there are significant differences between a phase function and its Legendre polynomial expansion at large scattering angles, which are important to satellite observations. This study finds that while it takes hundreds of Legendre polynomial expansion terms to simulate the backscattering portion of cloud phase functions accurately, the backscattered radiance pattern can be accurately estimated with only 30 Legendre polynomial expansion terms by replacing the regular Legendre polynomial expansion coefficients by coefficients obtained by a weighted singular-value decomposition least-squares fitting procedure. Thus the computing time can be significantly reduced. For satellite remote-sensing purposes, the weighted least-squares Legendre polynomial fitting is an optimal estimation of the cloud phase function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.