Abstract

Nanoparticles with visual imaging capabilities and synergistic therapeutics have a bright future in antitumor applications. However, most of the current nanomaterials lack multiple imaging-guided therapeutic capabilities. In this study, a novel enhanced photothermal photodynamic antitumor nanoplatform with photothermal imaging, fluorescence (FL) imaging, and MRI-guided therapeutic capabilities was constructed by grafting gold, dihydroporphyrin Ce6, and Gd onto α-iron trioxide. This antitumor nanoplatform can convert NIR light into local hyperthermia at a temperature of up to 53 °C under NIR light irradiation, while Ce6 can generate singlet oxygen, which further synergizes the tumor-killing effect. At the same time, α-Fe2O3@Au-PEG-Ce6-Gd can also have significant photothermal imaging effect under light irradiation, which can guide to see the temperature change near the tumor tissue. It is worth noting that α-Fe2O3@Au-PEG-Ce6-Gd can have obvious MRI and FL imaging effects after tail vein injection in mice with blood circulation, realizing imaging-guided synergistic antitumor therapy. α-Fe2O3@Au-PEG-Ce6-Gd NPs provide a new solution for tumor imaging and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call